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Outline

• Fuel combustion and CO2 capture pathways
• Oxy-fuel Combustion
• CO2 compression and capture processes

– Once-through process
– Autorefrigeration (Fluor process)
– Novel CETC process

• Pretreatment and moisture separation
• Process modeling and simulation
• Results
• Conclusions 



Capture Pathways
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Schematic of Oxy-Fuel Combustion for 
Power or Heat Generation
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An Idealized Thermodynamic Path of 
Compression, Cooling, and Pipeline Operations 

for CO2 

Mohitpour M., Golshan H., and Murray A.,  Pipeline Design and Construction:  A Practical Approach,  New York,  American Society of 
Mechanical Engineers Press, 2000



CO2 Phase Diagram

http://www.acpco2.com/index.php?lg=en&pg=2121



Conventional Multistage Compression



Autorefrigeration Separation of Carbon 
Dioxide (Fluor Process) 
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Novel CETC Process

• Proprietary process
• Some process simulation results will 

be presented
• Comparison between the results:

– CETC Compression process versus Fluor 
Autorefrigeration/separation process



Assumptions for Simulation

• Same baseline design conditions 
• Inlet pressure and temperature

– 1 bar, 40 0C
• Vent pressure and temperature

– 6 bar; above dew point
• Product pressure and temperature

– Optimum pressure is derived from the 
simulation at -5 0C



Feed Gas Composition

Properties Unit Compressor Inlet
Feed gas-1 Feed gas-2 Feed gas-3

Temperature 0C 40 40 40
Pressure bar 1 1 1
Flow Rate kg/hr 181.0 181.0 181.0
Composition

CO2 - 0.7443 0.800 0.8467
H2O - 0.0667 0.070 0.0667
O2 - 0.0335 0.030 0.0304
N2 - 0.1355 0.0845 0.0519
SO2 - 0.0012 0.005 0.0014
Ar - 0.0183 0.010 0.0024
NO - 0.0005 0.0005 0.0005
NO2 - 0.0001 0.0001 0.0001

Mole Fraction Mole Fraction Mole Fraction



Pretreatment and Moisture Separation
• The extent of pretreatment depends on:

– Design considerations( ice formation, corrosion, metal 
properties, etc.)

– Cost (cleaning cost, additional energy penalty, material 
cost, etc.)

– Application (EOR, Storage, ECBM, etc)



Feed Gas Inlet Temperature to 1st Stage
Temp Vs Moisture remained in Line
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Process Modeling and Simulation

• Process Modeling
– Both processes were modeled in HYSYS
– Same initial feed gas characteristics and final product 

conditions.
– Product CO2 purity equal or above 95%

• Processes Optimization
– CO2 recovery
– Energy requirement
– Stage pressure and recycle ratio



Comparison of Results
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Fluor Process at Different Optimized 2nd

Stage Pressure
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Impurities Distribution in Vent Stream
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Impurities Distribution in Product Stream
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Conclusions
• Many factors impact the design of a CO2 compression 

unit for oxy-fuel combustion
• The impact of impurities in the process design is an 

open area for research
• The once-through CO2 compression process is well 

established and easy to implement.
• Autorefrigeration process performance is superior to 

the once-through compression process
• Process simulation results shows that CETC process 

offers significant improvement over Autorefrigeration
process. 
– Improved energy efficiency at product purity above 95% 
– Lower liquid product pressure before the pumping module
– Higher recovery rates




